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Critical behavior of entropic shear rigidity
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We report on extensive molecular dynamics (MD) simulations of a model for gels in both two and three
dimensions. The model consists of randomly cross-linked monomers with a concentration p of cross-links
above the percolation concentration so that the system is in the amorphous solid phase. As the concentration of
cross-links approaches the percolation concentration, the entropic shear modulus vanishes as G~ (p—p,)" with
t=~1.9 in three dimensions and ¢~ 1.3 in two dimensions. These results hold whether or not the background
fluid consisting of finite clusters is retained in the system. These results are also consistent with our previous
calculations and with a conjecture of de Gennes but not with recent analytical results and another body of

simulations.

DOI: 10.1103/PhysRevE.73.061406

I. INTRODUCTION

The nature of the critical behavior of the entropic rigidity
of randomly cross-linked polymers and monomers continues
to be the subject of debate and some controversy. Examples
of such systems are rubber (chemically cross-linked macro-
molecules) and chemical gels (permanently cross-linked
molecules). At nonzero temperature, these systems develop a
shear modulus that is entropic in nature in the range p.<p
<p,, if the cross-linking forces are central in nature. Here p..
is the geometric percolation concentration and p, is the rigid-
ity percolation concentration. Above p,, energetic effects set
in [1]. Some time ago, de Gennes [2] argued that the critical
behavior of the shear modulus as p — p, should be the same
as that of the conductivity %, in a disordered mixture of con-
ductors and insulators. The conductivity problem has been
extensively studied with the result X (p)~(p—p.)" with 1
~ 1.3 in two dimensions and #=~2.0 in three dimensions.
Early numerical results for disordered mechanical networks
[3.4] seemed to support the de Gennes conclusion. However,
the models used in these early simulations were “phantom”
networks in which the particles were cross-linked through
simple springs without hard cores. Moreover, only the per-
colating network was retained in the simulations and the cal-
culations were performed in a constant volume ensemble.
Since the values of response functions are ensemble depen-
dent, one could argue that a different conclusion might be
obtained in a constant-pressure ensemble. Subsequent work
[5,6] showed that the addition of hard cores is irrelevant in
both two and three dimensions. In these simulations both the
percolating cluster and the finite clusters were kept. How-
ever, in at least one case [5] there is considerable variation of
the pressure.

A very different conclusion was reached by a number of
groups. A heuristic scaling argument [7] yielded t=dv where
d is the dimensionality and v is the correlation length expo-
nent for geometric percolation. Since »(d=2)=4/3 and
v(d=3)=~0.88, this prediction produces #(d=2)=8/3 and
t(d=3)=2.64 which are very different values from the de
Gennes conjecture and from our results. Results consistent
with the scaling argument have also been obtained from
simulations of a lattice model of cross-linked monomers [8]
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but, in our view, these calculations are questionable for rea-
sons that we will discuss in Sec. IV. Finally, a recent renor-
malization group calculation [9] that employs as a principal
assumption that there is a single divergent length at p,,
namely, the geometric percolation correlation length &(p),
also yields r=dv. As far as the experimental situation is con-
cerned, there is a similar division of results between values
of the exponent consistent with the de Gennes conjecture
[10] and with t=dv [11].

In this paper, we report on simulations of permanently
cross-linked monomers in both two and three dimensions in
the amorphous solid regime. We consider the situation with
the finite clusters retained as well as the case where only the
percolating cluster is simulated. When the background fluid
forms part of the system, the pressure is almost constant over
the entire range of parameters. Our results are the same for
both cases and entirely consistent with the de Gennes con-
jecture. We also present evidence that, as the percolation
point is approached, the density-density correlation function
of the background fluid becomes long ranged and diverges at
p.- This may explain why the renormalization group calcu-
lations of [9] do not agree with our results.

The remainder of this paper is organized as follows. In
Sec. II we briefly describe our model and the computational
details. Section III contains the results of the calculations and
Sec. IV contains a discussion of the results and an outlook
for future work.

II. MODEL AND COMPUTATIONAL DETAILS

We consider systems of soft disks of functionality f=4 in
two dimensions and soft spheres with f=6 in three dimen-
sions. The particles are initially placed on the vertices of a
square or simple cubic lattice and instantaneously and irre-
versibly connected to nearest neighbors with a probability p.
The square and cubic topology have the advantage that rigid-
ity percolation occurs at p,=1 and that the shear modulus is
entropic over the entire range of p. The cross-linking process
is that of simple bond percolation on the relevant lattice for
which the percolation probability is p.(d=2)=1/2 and
p(d=3)=0.2488 [12]. The potential that connects the par-
ticles is V,,(r)=k(r—ry)*/2, with r, the lattice spacing in the
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initial configuration. In addition to the bonding potential, all
particles interact through the steeply repulsive pair potential
V,ep=€lal r)%% which, although technically “soft,” is effec-
tively a hard core potential. Once the cross-linking process is
completed, the particles are free to move anywhere in the
computational box, subject to periodic boundary conditions.
The areal and volume densities are po?=0.75 and po~=0.4
which means that the un-cross-linked systems are simple lig-
uids. We take o to be our unit of length and € to be the unit
of energy. The temperature is set to kzT=¢€ and the spring
stiffness to k=5€/a”.

After cross-linking, the system is evolved through Brown-
ian dynamics [14] with a basic time step &=0.005\ma?/ e
until equilibrium has been attained, typically for 1000L* time
steps [13], where the total number of particles N=L? in
d=2 and N=L? in d=3. In two dimensions we were able to
simulate systems up to size L=128 or 16 384 particles
whereas, for d=3, the largest systems had L=32 or 32 768
particles. For each realization of the cross-linking for a given
p, we use a virial equation to calculate the elements of the
stress tensor o g, first for the undistorted computational box
and then, after reequilibration, for a computational box that
has been sheared by an amount 7y along the z axis. Reequili-
bration is necessary because all particles are initially dis-
placed affinely, e.g., x/=x;+7z; The shear modulus of a
given sample is then obtained from

sz( 7) - sz(o)
Y

and this quantity is averaged over different cross-linkings at
fixed p. We have used a number of values of y ranging from
0.01 to 0.1 to check that the response is linear. The results
reported in Sec. III were primarily obtained for y=0.05, a
value large enough to make the fluctuations resulting from
division, in Eq. (1), by a small number manageable.

The challenge in these calculations is the sample-to-
sample fluctuation of the modulus. For p>0.75 in the two-
dimensional case, 100 samples are sufficient for convergence
but in the range 0.505<p<0.55, many thousands of
samples are required for a reliable estimate of G. The diag-
onal elements of the stress tensor (pressure) converge much
more rapidly and one of the checks on the calculation is that
they are all the same. For every value of p, they are within
one part in 10* of each other.

As mentioned above, two types of calculations were car-
ried out. In the majority of these, after cross-linking the finite
clusters and single particles were removed from the system
and only the spanning cluster retained. For selected values of
L the entire system was simulated. The finite clusters in this
case provide an internal pressure that tends to collapse the
dangling ends toward the backbone. In Figs. 1 and 2 we
show the same equilibrated percolating cluster for the two
situations. The compactification in the case where the fluid is
present is evident.

G=- (1)

III. RESULTS

We separately discuss the two-dimensional and three-
dimensional cases.

PHYSICAL REVIEW E 73, 061406 (2006)

O %)
lo 060 00% O
60 39 090 00 909 960 9900 05C, 00 §

° oS o0
50 8 oaooéfé%og o °¥ 8.9 o0

000 °2 3
1O O

40 $3%°

>

20 [°F

O o O o
L 00Q O QO 00900 X5
) 00 0050
10 1 8 o2 oo 500as 0908 800 Rp0L80, s o5 Boigas” o o
Opo0 0 o O’ O (e} o o
00 22090 %o 05 _90%79 8 0050050 o O © So000 0 0
® 0 0 S0 ) 0020000 o o 00
o 08 8085 893825 980, 800 0,8525 05980 923%0" PBIRS0 °a.0.5 gbod
o° o 0 50 000g 0200%5 o0 00 o0 o o o o
ro%o o ,%°o_ 09 ° O 009 060 _ 020 00 500 "4l
0 ler®’0% 800090 & + £ 90°9%%00 30 0d8: 0590 1023903 0PPLY

SO s o0 B8 680500 o oY oYoR50 05 do8 % d0 50h0 T 056
90 o0, 000% o ooobo%oc'ooow ooood 000 30 Ogoﬂo oo,

9 o 0 P20 0g 0!
70 %000%0008 ooggooo o

0 o

6, P00 9% % (<)

098 d 0005020 00 9990%,3% 60 0%
604 %0 0G0
0000 &

o))
30 600398237 o o
0°00,%0°0° 0
ngoo 5 09% 00,
0.

0060 oo

(o} 0 O o, (<} 0
oo%ooo'ag%g Dogoocoooooog 0950 000?,0"00 00
'0 00 0O
0000 000 0% O

9,00 Q

o
S
o, %o O
o gzc’ooogo 05 0080, oo%o 08%0 9 oo‘%
o 090
% P00 500 %o 0 B 070 009573 ° £690
(o} (s

00
o O 0040 O,

Q.

OO

o

o

000

o

O

(e}
29 09

%W
o
o
000
000
[o)
So

o
o
oo 0
c o

8 I 0T

90

o
o i

080 588 ,00°000 006 00, o o
000 %° 09% 08000 09 o

3 6% 6 00 90%0 R

O [} 5

A
OO
O
O
Q°|

o0
00 o]

° S
00 00305 %

60800 0% 05 %0%
° oooooooooc?fPDOoODgoc 60

0 10

20 30 40 50 60 70
X

FIG. 1. Equilibrated spanning cluster for L=64, p=0.502 in two

dimensions. The fi

nite clusters were removed after cross-linking.

A. Two dimensions

In two dimensions, we carried out simulations for systems

ranging in size

from N=322 particles to N=128? particles

before cross-linking. For the largest system, we only simu-
lated the percolating cluster but for L=32 and 64 we also
carried out simulations for the total number of particles. We
first display results for the (dimensionless) pressure in Fig. 3.

When only the
creases as the cri

spanning cluster is kept, the pressure de-
tical point is approached. At p,., the pressure
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FIG. 2. The same spanning cluster as in Fig. 1, this time equili-
brated with the finite clusters included. The finite clusters are not

shown for clarity.
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FIG. 3. The pressure P as function of the probability p of cross-
links. In the absence of fluid, the pressure decreases as the critical
point is approached. Conversely, when the fluid is retained (upper
branch), the pressure increases by about 2% over the range p
=0.7-0.52 as the negative contribution of the cross-links is progres-
sively removed.

for a finite system is not zero and there are notable finite-size
effects visible in the data. Conversely, when the fluid is re-
tained, the pressure increases by only 2% over the range
p=0.7-0.52. Therefore, the total system, although the area is
fixed, is essentially isobaric. We note that the behavior of the
pressure seems to be model dependent: Farago and Kantor
[5] simulated a system of hard disks and tethers and found an
increasing pressure as p — p,. and a negative pressure at high
p. This is an indicator that in their model the contribution of
the tethers dominates over that of the hard cores.

We now discusss the behavior of the shear modulus as
function of p. In Fig. 4 we display G(p) as function of
p—p. for L=64 for the two cases of fluid and no background
fluid. The two sets of data are essentially identical indicating
that the shear modulus is entirely due to the percolating clus-
ter and that the internal pressure and consequent compres-
sion of the spanning cluster is irrelevant. We have also cal-
culated the modulus for the two situations for L=32 and
found the same behavior.

We next display, in Fig. 5, the data for the shear modulus
of the spanning cluster for L=32, 64, and 128 together with
lines representing the functions G(p)~ (p—p.)'** and G(p)
~(p—p.)? where v=4/3 is the correlation length exponent
for percolation. It is evident from the data that there are
strong finite-size effects and that if G(p)~ (p—p,)’ then ¢ is
much closer to 1.3 than to dv=_8/3. A simple way of correct-
ing for finite size effects is the finite-size scaling method in
which it is assumed that G(p,L)=L""®(L/&p))
=L"""®((p-p,)"L) where ® is a universal function. We plot
L""G(p,L) for the three values of L in Fig. 6, using r=1.3
and the known value v=4/3. The collapse of the data, while
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FIG. 4. The shear modulus for L=64 for the cases of spanning
cluster only and spanning cluster plus fluid. The discrepancy be-
tween the two sets of data is a measure of the statistical error.

not spectacular, is quite reasonable and very much better
than with the choice =dv. For the choices r=1.2 and 1.4 one
already sees a systematic separation of the data according to
system size and we therefore conclude that t=1.3+0.1 for
this model. For large values of the argument x of the scaling
function, the required behavior is ®(x) ~x"" and this line is
also shown in the figure. Because the exponent 8=5/36 that
controls the probability that a given particle is a member of

1 .

(o auie}

G(p)o°/ e

0.01

0.01

PP,

FIG. 5. The shear modulus generated by the spanning cluster as
a function of p—p,. for L=32, 64, and 128. The straight lines cor-
respond to the critical behavior G ~ (p—p.)" with t=1.3 (de Gennes)
and r=dv.
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FIG. 6. L"’G(p,L) plotted as a function of x=L(p—p,)" for
various L. The straight line is the function x” which is the required
form of the scaling function for large values of the argument.

the spanning cluster is so small, this probability rises very
rapidly, and already at p=0.7 more than 99% of the original
particles remain after cross-linking and removal of finite
clusters. This is undoubtedly one of the reasons that only a
rather narrow region of clear power law behavior is seen in
Figs. 5 and 6.

The two-dimensional data are clearly inconsistent with
the renormalization group prediction r=dv [9]. However,
two-dimensional systems are somettimes special and we
therefore also carried out the three-dimensional calculations
that we next discuss.

B. Three dimensions

In three dimensions, we are limited by computational re-
sources to systems of size N=323 particles or smaller. We
begin, as in the previous subsection, with a discussion of the
pressure that is depicted in Fig. 7. In the presence of fluid,
the pressure increases slightly (5%) over the range of p 0.4
=p=0.26 shown. The raw data for the shear modulus are
displayed in Fig. 8 for the four values of L with only the
spanning cluster present and for L=10 in the pressurized
case. As in two dimensions, the shear modulus is the same in
the pressurized case as when only the spanning cluster is
retained. There are evident finite-size effects which set in
quite far from the critical point. Also shown on this graph are
the functions (p—p,)" with t=1.9 and r=dv=2.64. Neither
provide a particularly good fit to the data but it is clear that
the smaller power represents the data much better. We have
used 7=1.9 rather than #=2.0 because in the finite-size scal-
ing analysis shown in Fig. 9 a slightly better collapse of the
data is obtained with the smaller exponent. Using the same
criteria as in two dimensions, we conclude that r=1.9+0.15
for the three-dimensional model.
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FIG. 7. The dimensionless pressure in three dimensions as a
function of p for L ranging from 10 to 32 when only the spanning
cluster is present and for L=10 (upper branch) where the pressur-
izing fluid is retained. In this case, the pressure incrases by roughly
5% in the range p=0.4—0.26.

Although the data in both two and three dimensions are
plagued by large fluctuations, the conclusion that the de
Gennes conjecture is closer to reality (at least for this model)
than the scaling hypothesis t=dv seems inescapable. We will
discuss this further in the next section.

01 L
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0.0001
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FIG. 8. The three-dimensional shear modulus for several values
of L as function of p. The data for L=10 with fluid present are
indistinguishable from those obtained for the spanning cluster only.
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FIG. 9. The rescaled data for the shear modulus plotted as a
function of L/, using r=1.9 and v=0.88. The collapse is much
worse if =dv is used instead. The solid line is the required behav-
ior (L/&)"” in the region L> ¢&.

IV. DISCUSSION

As mentioned in the Introduction, our results in both two
and three dimensions are consistent with those of Farago and
Kantor [5,6] for a different central force model, but not with
those of Ref. [8]. These authors measure the mean square
fluctuation of the radius of gyration of the percolating cluster
(ARﬁ):((Rg—<Rg))2) and conjecture that G~ 1/(AR§). We
are not aware of any derivation of this connection, except in
the case of a simple spring in a heat bath. Moreover, since
the radius of gyration is a relatively straightforward quantity
to measure, we have done so in both two and three dimen-
sions and find that it is not proportional to the modulus of
our model in either case. As well, there is a strong indication
in the work of Farago and Kantor [6] that there is more than
one relevant exponent in the case where the underlying sym-
metry for the case p=1 is cubic: The difference between the
two independent shear moduli of a system with cubic sym-
metry also vanishes at p. with a power law behavior
(p-p.)" with h=4. Therefore, we are doubtful that measur-
ing the fluctuations of the radius of gyration captures the
critical behavior of the elastic constants.

Our results are also inconsistent with the conclusions of
Xing et al. [9] who carried out a field theoretic renormaliza-
tion group calculation and concluded that t=dwv to all orders
in e=6—d. The underlying assumption in their work is that
near p. there is only a single relevant length, namely, the
percolation correlation length &(p). We have measured the
density-density correlation function &(r)={p(r)p(0))/{p)?
—1 of the fluid component of the system as a function of p in
both two and three dimensions. We show this function for
L=32 in three dimensions in Fig. 10 for three values of p
reasonably close to the percolation point. While the data are
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FIG. 10. The density-density correlation function for L=32 of
the fluid component of the system for (top to bottom) p=0.252,
0.255, and 0.3.

too limited to permit an accurate determination of a correla-
tion length, it seems clear that as p — p,. the decay of h(r) as
a function of r becomes slower and this may indicate the
emergence of a second nontrivial length.

The situation is clearer in two dimensions where we can
measure the density-density correlation function over much
longer distances. There is a range of r over which &(r) seems
to decay exponentially as exp[—r/&,(p)] where &, is the cor-
relation length associated with 4. This is depicted in Fig. 11
where In(%) is plotted as a function of r. While it is possible

0.01

FIG. 11. The density-density correlation function A(r) as func-
tion of r for several values of p close to p... The straight lines are fits
to the form h(r)=a exp(-r/&,).
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FIG. 12. Finite-size scaling plot of the correlation length for L
=64 and 128. The value of the exponent y used in this plot is 1.15.

that at larger length scales or closer to the critical point a
power law decay will emerge, we see no indication of that.
As well, although it is obvious that interactions between fluid
particles and those on the percolating cluster are responsible
for the emergence of &,, it seems that &,(p) is not propor-
tional to the percolation correlation length &(p). Evidence for
this is presented in Fig. 12 where a finite-size scaling plot of
the correlation length is given. While the data are not free of
noise, our best estimate of the exponent y in the equation

PHYSICAL REVIEW E 73, 061406 (2006)

& (p)~(p—p.)~7is y=1.15. While this is not very different
from v=4/3, that value of vy yields a considerably worse
collapse of the data. Therefore, it seems plausible that the
theory of [9] is incomplete. At this point we have no clear
picture of how a second length scale could be generated.
However, Fig. 2 demonstrates that the finite clusters signifi-
cantly distort the spanning cluster and it seems plausible that
other lengths such as the chemical length [12] that are not
proportional to &(p) could play a role.

The present results, together with our earlier results [3,4]
as well as those of Farago and Kantor [5,6], are consistent
with the conjecture that there is a single universality class
that describes the critical behavior of entropic rigidity. On
the other hand, experimental values of the critical exponent ¢
do fall into two rather widely separated groups [10,11]. To
date all the simulations that we are aware of have been done
for central force networks for which there is a range of p in
which entropy dominates. It would be of interest to include
bond-bending forces in a model and such calculations are
presently in progress [15]. In this case, p,=p, and at T=0 the
critical exponent r=~4. We would expect that at finite tem-
perature the entropic contribution would dominate at least
very close to the critical point because at large length scales
the angular piece of the microscopic interaction should
renormalize to zero. However, it is certainly possible that this
is not the case or that there is a large crossover regime in
which the effective exponent is larger than the conductivity
exponent.
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